Circle, Triangle, Square

\rightarrow Towards \rightarrow

The Binary Number System

$\frac{\mathfrak{c} \circ}{\substack{0 \\ \square 口 E}}$ Previously on CSP....

1 place $=3$, 1 -shape patterns

딤잉 Previously on CSP....

2 places = 9, 2-shape patterns

2 places $=9,2$-shape patterns

$\frac{\text { col }}{\text { col Previously on CSP.... }}$

3 places $=27$, 3-shape patterns

$\frac{\text { col }}{\text { col Previously on CSP.... }}$

3 places $=27$, 3-shape patterns

Previously on CSP....

Number each pattern to make a shape -> number mapping

What if we had 10 shapes?

1 place $=$ Ten 1-shape patterns

\longleftarrow These are just shapes!

Quiz: What comes next?
Ten
shapes

0	0
1	0
2	-
3	
4	
5	
6	-
7	-
8	
9	

Quiz: What comes next?
Ten
shapes

0		
1		
2		
4		
5		
6		
7		
9		

Place Values...

Place Values...

With Ten "shapes" every time you add a place, you multiply by 10 the number of numbers...

10 possibilities (0-9)
__ _ 100 possibilities (00-99)
1000 possibilities (000-999)

Place Values...

 With Three "shapes" every time you add a place, you multiply by 3 the number of numbers...
3 possibilities $(O \triangle \square)$

9 possibilities (OO - ■■)
27 possibilities (000-■■■)

Write the number...

Four thousand and seventeen

Previously on CSP....

Place Values...Remember what it means?

Where is this heading?

...binary...

"Binary" is a number system with 2 shapes...

The pattern holds... With two "shapes" every time you add a place, you multiply by 2 the number of numbers...

2 possibilities (01)
4 possibilities (00-11)
8 possibilities (000-111) 16 possibilities (00001111)

$\frac{\mathrm{c} \circ}{\mathrm{c} \cdot \mathrm{D}_{1}}$ Priously on CSP....

Place Values...powers of 2

Previously on CSP....

Constructing a binary number means figuring out which powers of 2 add up to the number you want

$\begin{array}{llllllll}128 & 64 & 32 & 16 & 8 & 4 & 2 & 1\end{array}$

Constructing a binary number means figuring out which powers of 2 add up to the number you want
128
64
32
1
16
8
4

2
1 0
0

0
1
0
0
1 $32+8+1=41$

To the flippy do!

Flippy Do

Flippy Do Quiz:

What's the binary number?

- 5
- 17
- 63
- 64
- 100
- 127

What's the decimal number?

- 100
- 101
- 1101
- 10000
- 10101010
- 11111111

